Photons from Relativistic Heavy Ion Collisions: Progress and Puzzles

BertschFest

OUTLINE

- Sources & EM emissivity: Rates
- Modelling the evolving system:
 - 3D hydro
 - 3D viscous hydro
 - Fluctuating initial states
- How are the photon yields dependent on the dynamics?
- Is it the same for dileptons?
- Status of our understanding of the data

Journal Server: Phys. Rev. C Server

High energy photon production in nuclear collisions.

K. Nakayama, G. Bertsch (Michigan State U., NSCL). Dec 1986. 10 pp.

Published in Phys.Rev. C34 (1986) 2190-2200

DOI: 10.1103/PhysRevC.34.2190

Detailed record - Cited by 9 records

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

Journal Server: Phys. Rev. C Server

Detailed record - Cited by 29 records

6. Energetic photons from intermediate energy proton- and heavy-ion-induced reactions.

W. Bauer, G.F. Bertsch, Wolfgang Cassing, Ulrich Mosel (Michigan State U., NSCL & Giessen U.). Dec 1986. 6 pp.

Published in Phys.Rev. C34 (1986) 2127-2133

DOI: 10.1103/PhysRevC.34.2127

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

Journal Server: Phys. Rev. C Server

Detailed record - Cited by 85 records

Sources of photons in a relativistic nuclear collision:

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Thermal photons Thermal

Jet-plasma photons Thermal

Jet in-medium bremsstrahlung Thermal

INFO CARRIED BY THE RADIATION

$$dR = -\frac{g^{\mu\nu}}{2\omega} \frac{d^3k}{(2\pi)^3} \frac{1}{Z} \sum_{i} e^{-\beta K_i} \sum_{f} (2\pi)^4 \delta(p_i - p_f - k)$$
$$\times \langle j \mid J_{\mu} \mid i \rangle \langle i \mid J_{\nu} \mid j \rangle$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$\omega \frac{d^3 R}{d^3 k} = -\frac{g^{\mu\nu}}{(2\pi)^3} \operatorname{Im}\Pi^R_{\mu\nu}(\omega, k) \frac{1}{e^{\beta\omega} - 1}$$
 (photons)

$$E_{+}E_{-}\frac{d^{6}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}}\frac{1}{k^{4}}L^{\mu\nu}\operatorname{Im}\Pi_{\mu\nu}^{R}(\boldsymbol{\omega},k)\frac{1}{e^{\beta\omega}-1} \text{ (dileptons)}$$

McLerran, Toimela (85), Weldon (90), Gale, Kapusta (91)

Thermal Photons from hot QCD: HTL program (Klimov (1981), Weldon (1982), Braaten & Pisarski (1990); Frenkel & Taylor (1990))

$$\operatorname{Im} \Pi^{\mu}_{R\mu} \sim \ln \left(\frac{\varpi T}{\left(m_{th} \left(\sim gT \right) \right)^2} \right) \begin{array}{c} \operatorname{Kapusta, Lichard,} \\ \operatorname{Seibert} (1991) \\ \operatorname{Baier, Nakkagawa,} \\ \operatorname{Niegawa, Redlich} (1991) \\ \operatorname{Niegawa, Redlich} (1991)$$

Niegawa, Redlich (1992)

Going to two loops: Aurenche, Kobes, Gelis, Petitgirard (1996) Aurenche, Gelis, Kobes, Zaraket (1998)

Co-linear singularities:
$$\alpha_s^2 \left(\frac{T^2}{m_{th}^2}\right) \sim \alpha_s$$

2001: Results complete at $O(\alpha_s)$

Arnold, Moore, and Yaffe JHEP 12, 009 (2001); JHEP 11, 057 (2001) Incorporate LPM; Inclusive treatment of collinear enhancement, photon and gluon emission

Charles Gale

Are these rates final?

Approach is LO, but

$$\alpha_{s} \sim 0.2 - 0.3$$

• Integral equation can be written in terms of a single-gluon scattering kernel:

NLO:
$$Q = (q^+, q^-, q_\perp) = (gT, g^2T, gT)$$

$$C(q_T)_{\text{LO}} = \frac{Tg^2 m_D}{q_T(q_T + m_D)} \Rightarrow \text{NLO}$$

Aurenche, Gélis, Zaraket (2002)

Simon Caron-Huot PRD (2010)

Larger angle emission

Conversion photons

$$R_{\rm NLO} \sim g^3 \ln(1/g) + g^3$$

- Net correction to emission rate not numerically important in region up to k/T ~10
- Techniques developed here will have other applications in FTFT

J.Ghiglieri, J.Hong, A.Kurkela, E.Lu, G.D.Moore, D.Teaney (2012)

Larger angle emission

Conversion photons

$$R_{\rm NLO} \sim g^3 \ln(1/g) + g^3$$

- Net correction to emission rate not numerically important in region up to k/T ~10
- Techniques developed here will have other applications in FTFT

J.Ghiglieri, J.Hong, A.Kurkela, E.Lu, G.D.Moore, D.Teaney (2012)

ELECTROMAGNETIC RADIATION FROM HADRONS

Chiral, Massive Yang-Mills:

O. Kaymakcalan, S. Rajeev, J. Schechter, PRD 30, 594 (1984)

$$L = \frac{1}{8} F_{\pi}^{2} \operatorname{Tr} D_{\mu} U D^{\mu} U^{\dagger} + \frac{1}{8} F_{\pi}^{2} \operatorname{Tr} M \left(U + U^{\dagger} \right)$$
$$- \frac{1}{2} \operatorname{Tr} \left(F_{\mu\nu}^{L} F^{L\mu\nu} + F_{\mu\nu}^{R} F^{R\mu\nu} \right) + m_{0}^{2} \operatorname{Tr} \left(A_{\mu}^{L} A^{L\mu} + A_{\mu}^{R} A^{R\mu} \right)$$

+ non-minimal terms

Parameters and form factors are constrained by hadronic phenomenology:

- •Masses & strong decay widths
- •Electromagnetic decay widths
- •Other hadronic observables:

• e.g.
$$a_1 o \pi
ho$$
 D/S

(See also, Lichard and Vojik, Nucl. Phys. (2010); Lichard and Juran, PRD (2008))

EM emissivities computed: Turbide, Rapp, Gale, PRC (2004); Turbide, McGill PhD (2006) Charles Gale

APPLYING THIS TO INTERPRET PHOTONS MEASURED @ RHIC: RATES ARE INTEGRATED USING RELATIVISTIC HYDRODYNAMIC MODELING

- At low p_T, spectrum dominated by thermal components (HG, QGP)
- At high p_T, spectrum dominated by pQCD
- Window for jet-QPG contributions at midp_T

Turbide, Gale, Frodermann, Heinz, PRC (2008); Higher p_T : G. Qin et al., PRC (2009)

ONE OF THE USES OF PHOTONS: CHARACTERIZING THE HOT MATTER CREATED AT RHIC

$$T_{\text{excess}} = 221 \pm 19 \pm 19 \,\text{MeV}$$

ONE OF THE USES OF PHOTONS: CHARACTERIZING THE HOT MATTER CREATED AT RHIC

$$T_{\text{excess}} = 221 \pm 19 \pm 19 \,\text{MeV}$$

 $T_{ini} = 300 \text{ to } 600 \text{ MeV}$ $t_0 = 0.15 \text{ to } 0.5 \text{ fm/c}$

D'Enteria & Peressounko, Eur. Phys. J. (2006)

Knowing rates alone is not enough to guarantee predictive power or even characterization ability harles Gale

BEYOND SIMPLE SPECTRA: FLOW AND CORRELATIONS

$$\frac{dN}{p_T dp_T d\phi} = \frac{dN}{2\pi p_T dp_T} \left[1 + \sum_{n} 2v_n \cos(n\phi) \right]$$

- Soft photons will go with the flow
- Jet-plasma photons: a negative v₂
- Details will matter: flow, T(t)...

Turbide, Gale, Fries PRL (2006) Low p_T: Chatterjee et al., PRL (2006) All p_T: Turbide *et al.*, PRC (2008)

11

PROGRESS IN CHARACTERIZATION TOOL: 3D VISCOUS RELATIVISTIC HYDRODYNAMICS

- Ideal: Schenke, Jeon, and Gale, PRC (2010)
- FIC and Viscous: Schenke, Jeon, Gale, PRL (2011)

Viscosity effects on EM observables?

PROGRESS IN CHARACTERIZATION TOOL: 3D VISCOUS RELATIVISTIC HYDRODYNAMICS

- Ideal: Schenke, Jeon, and Gale, PRC (2010)
- FIC and Viscous: Schenke, Jeon, Gale, PRL (2011)

Viscosity effects on EM observables?

THE EFFECTS OF SHEAR VISCOSITY ON BULK DYNAMICS

$$T_{ ext{ideal}}^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
 $T^{\mu\nu} = T_{ ext{ideal}}^{\mu\nu} + \pi^{\mu\nu}$
 $J_{ ext{HH}}^{ ext{Isra}}$
 $\partial_{\mu}(su^{\mu}) \propto \eta$

Israël & Stewart, Ann. Phys. (1979), Baier et al., JHEP (2008), Luzum and Romatschke, PRC (2008)

- Viscous evolution starts with a lower T
- T drop is slower than ideal case

13

THE EFFECTS OF SHEAR VISCOSITY ON BULK DYNAMICS

$$T_{ ext{ideal}}^{\mu\nu} = (\mathcal{E} + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
 $T^{\mu\nu} = T_{ ext{ideal}}^{\mu\nu} + \pi^{\mu\nu}$
 $J_{ ext{HB}}^{ ext{Isra}}$
 $\partial_{\mu}(su^{\mu}) \propto \eta$

Israël & Stewart, Ann. Phys. (1979), Baier et al., JHEP (2008), Luzum and Romatschke, PRC (2008)

THE EFFECTS OF SHEAR VISCOSITY ON THE PHOTON DISTRIBUTION

In-medium hadrons:

$$f_0(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{\exp[(u^{\mu}p_{\mu} - \mu)/T] \pm 1}$$

$$f \to f_0 + \delta f$$
, $\delta f = f_0 (1 \pm (2\pi)^3 f_0) p^{\alpha} p^{\beta} \pi_{\alpha\beta} \frac{1}{2(\varepsilon + P)T^2}$

$$q_0 \frac{d^3 R}{d^3 q} = \int \frac{d^3 p_1}{2(2\pi)^3 E_1} \frac{d^3 p_2}{2(2\pi)^3 E_2} \frac{d^3 p_3}{2(2\pi)^3 E_3} (2\pi)^4 \left| M \right|^2 \delta^4 (...) \frac{f(E_1) f(E_2) \left[1 \pm f(E_3) \right]}{2(2\pi)^3}$$

One considers all the reaction and radiative decay channels of external state combinations of:

$$\{\pi, K, \rho, K^*, a_1\}$$
 With hadronic form factors

+ QGP Photons

14

THE EFFECTS OF SHEAR VISCOSITY ON THE PHOTON DISTRIBUTION

K. Dusling NPA (2010) Chaudhuri & Sinha, PRC (2011)

Viscous effects harden the photon spectrum

M. Dion et al., PRC (2011)

THE NET THERMAL PHOTON YIELD

PROGRESS

- Viscous corrections make the spectrum harder,
 ≈100% at p_T = 4 GeV.
- o Increase in the slope of ≈15% at $p_T = 2$ GeV.
- Extracting the viscosity from the photon spectra will be challenging
- Once pQCD photons are included: a few % effect from viscosity
- •More work is still needed to properly include all photon sources in a consistent way

SHEAR VISCOSITY AND PHOTON V2

M. Dion *et al.*, PRC 2011

Charles Gale

SHEAR VISCOSITY AND PHOTON V2

- The net elliptic flow is a weighted average. A larger QGP yield will yield a smaller v₂.

 Same story mutatis mutandis for the HG
- The turnover at $p_T \approx 2 \text{ GeV}$ is QGP-driven (*)
- The net effect of viscous corrections makes the photon elliptic flow smaller, as it does for hadrons

17

M. Dion et al., PRC 2011

LOOKING UNDER THE HOOD: NON-EQUILIBRIUM EFFECTS

18

LOOKING UNDER THE HOOD: NON-EQUILIBRIUM EFFECTS

INITIAL STATE FLUCTUATIONS: A PARADIGM SHIFT IN HEAVY ION ANALYSES

Lumpy

Schenke, Jeon, Gale, PRL (2011)

20

INITIAL STATE FLUCTUATIONS: A PARADIGM SHIFT IN HEAVY ION ANALYSES

Lumpy

Schenke, Jeon, Gale, PRL (2011)

20

INITIAL STATE FLUCTUATIONS: MC GLAUBER INITIALIZATION

- •Sample the nucleon locations from the nuclear density profile (with or without the shell effect deformations)
- Identify the colliding partners $(d \le \sqrt{\sigma_{NN} / \pi})$
- Having identified the wounded nucleons, ascribe an energy distribution at each site, with a Gaussian width σ_0 .

MOVING INTO THE "CHARACTERIZATION" PHASE...

MOVING INTO THE "CHARACTERIZATION" PHASE...

THE EFFECT OF FIC ON THE THERMAL PHOTON **SPECTRUM**

- •FIC produces higher initial T (hot spots), and higher initial gradients
- •FIC conditions are demanded by hadronic data (v_{odd})
- These lead to a harder spectrum, as for hadrons

Dion et al., PRC (2011) Chatterjee et al., PRC (2011)

23

ALL TOGETHER: FIC + VISCOSITY

- Combined with viscous corrections, FIC yield an enhancement by ≈ 5 @ 4 GeV, and ≈ 2 @ 2 GeV
- Temperature estimated by slopes can vary considerably
- •A combination of hot spots and blue shift hardens spectra
- Once pQCD photons are included: only modest changes

ALL TOGETHER: FIC + VISCOSITY

- Combined with viscous corrections, FIC yield an enhancement by ≈ 5 @ 4 GeV, and ≈ 2 @ 2 GeV
- Temperature estimated by slopes can vary considerably
- •A combination of hot spots and blue shift hardens spectra
- Once pQCD photons are included: only modest changes

FICS AND THERMAL PHOTON V2

- •FICs enhance v₂ in this centrality class (0-20%), as for hadrons
- For hadrons measured in events belonging to large centrality, FICs will *decrease* v₂
- •HG elliptic flow is much larger than QGP elliptic flow, but remember net v₂ is a weighted average

FICS AND THERMAL PHOTON V2

- •FICs enhance v₂ in this centrality class (0-20%), as for hadrons
- For hadrons measured in events belonging to large centrality, FICs will decrease v₂
- HG elliptic flow is much larger than QGP elliptic flow, but remember net v₂ is a weighted average
- •Net v₂ is comparable in size to that with ideal medium.

PHOTON V2 DATA?

- •New data is higher than calculation, even with e-b-e initial state fluctuations, and ideal hydro
- •Size comparable with HG v₂

PHOTON V2 DATA?

- •New data is higher than calculation, even with e-b-e initial state fluctuations, and ideal hydro
- •Size comparable with HG v₂

PULLIN

CAN THE DATA TEACH US ABOUT DYNAMICS?

27

q_t [GeV]

SOME FACTS AND SOME LEADS

- FICs are here to stay. The meaning of "initial temperature" is altered.
- Need to explore hydro initialization and parameters. This requires consistency with the hadronic data.
- Making the QGP signal larger will *decrease* the v₂. Including the T=0 photons, will *decrease* v₂.
- Non-zero initial shear tensor? Primordial flow?

WHAT ABOUT DILEPTONS? THERMAL DILEPTON SPECTRUM, AND ELLIPTIC FLOW

$$v_{2}(M, p_{T}, b) = \frac{\int d\phi \cos(2\phi) \frac{d^{4}N}{dM^{2}dy p_{T}dp_{T}d\phi}}{\int d\phi \frac{d^{4}N}{dM^{2}dy p_{T}dp_{T}d\phi}}$$

Chatterjee, Srivastava, Heinz, Gale, PRC (2007)

•Additional degree of freedom: M and p_T may be varied independently

THERMAL DILEPTON SOURCES, QGP

•HTL at finite momentum:

Turbide, Gale, Srivastava, Fries PRC (2006)

• Non-perturbative estimate:

No single calculation covers the entire dilepton kinematical phase space

Ding et al., PRD (2011)

30

THERMAL DILEPTON SOURCES, QGP

•HTL at finite momentum:

Turbide, Gale, Srivastava, Fries PRC (2006)

• Non-perturbative estimate:

No single calculation covers the entire dilepton kinematical phase space

Ding et al., PRD (2011)

30

Charles Gale

THERMAL DILEPTON SOURCES, HG

- HG contribution: calculate the in-medium vector spectral density
 - Many-Body approach with hadronic effective Lagrangians
 - •Rapp and Wambach, ANP (2000)
 - Empirical evaluation of the vector mesons forwardscattering amplitudes

$$\Pi_{ab}(E,p) = -4\pi \int \frac{d^3k}{(2\pi)^3} n_b(\omega) \frac{\sqrt{s}}{\omega} f_{ab}^{\text{c.m.}}(s)$$

- E. Shuryak, NPA (1991)
- Eletsky, Ioffe, Kapusta (1999)
- Vujanovic, Gale (2009)
- Chiral Reduction formulae
 - Yamagishi, Zahed (1996)

DILEPTONS, THE STORY AS OF A FEW MONTHS AGO

Cocktail + Yield 10⁻¹ Minimum Bias Au-Au Data --- 10⁻² dN/dM [GeV¹] 10⁻³ 10⁻⁴ 10⁻⁵ 0.2 0.6 1.2 0.4 0.8 1.4 0 M [GeV]

van Hees, Rapp (2010)

Dusling, Zahed (2009)

Bratkovskaya, Cassing, Linnyk (2012)

DILEPTONS, THE STORY AS OF A FEW MONTHS AGO

van Hees, Rapp (2010)

Dusling, Zahed (2009)

Bratkovskaya, Cassing, Linnyk (2012)

32

THERMAL DILEPTON SPECTRA: VISCOSITY?

- Transition from HGdominated to QGPdominated
- Charm not included here
- Effects of viscous corrections are modest Dusling & Lin, NPA (2008)
- Same hydro as for photon calculations

Charles Gale

THERMAL DILEPTON V2 WITH VISCOUS EFFECTS

- Low M: HG-dominated
- High-M: QGP dominated

Chatterjee, Srivastava, Heinz, Gale PRC (2007)

- •No open charm here
- •v₂ as a function of M will contain some info on the transition regime
- •Viscous effects are moderate
- •FICs? Coming soon...

34

G. Vujanovic, 2011-12

DILEPTONS, SOME RECENT RESULTS

- Uses MUSIC, and rates compatible with NA60 data
- IMR: sensitive to charm energy loss Olint Young et al., arXiv:1111.0647
- IMR: Thermal effects?
 - Li and Gale, PRL (1998)
- FICs to come

35

DILEPTONS, SOME RECENT RESULTS

- Uses MUSIC, and rates compatible with NA60 data
- IMR: sensitive to charm energy lossClint Young et al., arXiv:1111.0647
- IMR: Thermal effects?
 - Li and Gale, PRL (1998)
- FICs to come

ale

CONCLUSIONS

- The status of EM rates and their integration in dynamical models is still in flux
- Photon v₂ is sensitive to the EOS, and to various hydro parameters such as viscosity, and initial conditions (time and FICs). Current v₂ data is a puzzle. New physics?
- Dilepton v₂ with good statistics is needed to complete the EM emission systematics. STAR & PHENIX?
- FICs and viscosity(ies) make a difference in photon and dilepton characterization: one must be consistent with hadronic data
- Known unknowns: pre-equilibrium radiation, thermal vs. charm components in the dilepton IMR

Heavy-ion collision theory with momentum-dependent interactions

C. Gale

Physics Department, University of Minnesota, Minneapolis, Minnesota 55455

G. Bertsch

Physics Department and Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

S. Das Gupta

Department of Physics, McGill University, Montreal, Quebec, Canada (Received 29 October 1986)

We examine the influence of momentum-dependent interactions on the momentum flow in 400 MeV/nucleon heavy ion collisions. Choosing the strength of the momentum dependence to produce an effective mass $m^* = 0.7m$ at the Fermi surface, we find that the characteristics of a stiff equation of state can be obtained with a much softer compressibility.

A GUIDE TO MICROSCOPIC MODELS FOR INTERMEDIATE ENERGY HEAVY ION COLLISIONS

G.F. BERTSCH

Cyclotron Laboratory and Physics Department, Michigan State University, East Lansing, MI 48824, U.S.A.

and

S. DAS GUPTA

Physics Department, McGill University, Montreal, Quebec, Canada H3A 2T8

Received September 1987

Relativistic Hydrodynamic Theory of Heavy-Ion Collisions*

A. A. Amsden, G. F. Bertsch, † F. H. Harlow, and J. R. Nix

Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

(Received 11 June 1975)

By use of finite-difference methods we solve the classical relativistic equations of motion for the head-on collision of two heavy nuclei. For ¹6O projectiles incident onto various targets at laboratory bombarding energies per nucleon ≤2.1 GeV, curved shock waves develop. The target and projectile are deformed and compressed into crescents of revolution. This is followed by rarefaction waves and an overall expansion of the matter into a moderately wide distribution of angles.

Relativistic Hydrodynamic Theory of Heavy-Ion Collisions*

A. A. Amsden, G. F. Bertsch, † F. H. Harlow, and J. R. Nix

Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

(Received 11 June 1975)

By use of finite-difference methods we solve the classical relativistic equations of motion for the head-on collision of two heavy nuclei. For ¹⁶O projectiles incident onto various targets at laboratory bombarding energies per nucleon ≤ 2.1 GeV, curved shock waves develop. The target and projectile are deformed and compressed into crescents of revolution. This is followed by rarefaction waves and an overall expansion of the matter into a moderately wide distribution of angles.

